
b
er

lin

Extending Differentiable Rendering Towards
Participating Media
Master’s Thesis Presentation

Tim Stullich
Monday 15th June, 2020

Technical University Berlin - Department of Computer Engineering and Microelectronics



Table Of Contents

1. Introduction

2. Differentiable Rendering

3. Volumetric Scattering

4. Code Implementation

5. Evaluation

6. Conclusion

1



Introduction



Motivation

Shader node graph for a low polycount tree [Imp18]

2



Motivation

• Modern shader code is becoming increasingly more complex
• Negatively impacts productivity of 3D application users
• Currently there are no known solutions to this problem
• Can differentiable rendering assist this use case?

3



Thesis Overview

Thesis Goal
Extend and evaluate differentiable rendering by integrating
homogeneous participating media into a differentiable renderer

This was accomplished by:

1. Researching differentiable rendering to find a suitable renderer
2. Extending redner’s [Li+18] functionality to render homogeneous
participating media

3. Evaluating how the code implementation solves the shader
graph problem by running a number of experiments

4



Differentiable Rendering



What Is Differentiable Rendering?

3D Scene Image
Rendering F(�)

Inverse?

Parameters (�)
Camera Pose
Geometry
Materials
Lights 

Pixel Color (I)

5



Backpropagation

• Machine learning algorithm
to train neural networks

• Uses gradient vector ∇ to
minimize a loss function

• L = arg min
π

I∑
i=0

(Ti − Ci)2

• Gradient Descent

• Propagates loss to inputs
through the Chain Rule

• Allows for adjusting of scene
parameters according to the
pixel color

Gradient vector of f [LB14]

6



Gradient Descent

Error

Scene Params

Current Img.

Target Img.

Gradient w.r.t.

Scene Param.

Loss Function

7



Volumetric Scattering



Volumetric Scattering Terminology

• Occurs when light interacts
with particles outside of a
vacuum

• Photons collide with
particles which are
absorbed, scattered or
emitted

• Bounded volume is called a
participating medium

• Homogeneous vs.
heterogeneous medium

”God rays” shining through fog. [11]

8



Volumetric Scattering Processes

Absorption (σa) Scattering (σs) Emission

Notable properties

• Absorption coefficient (σa), scattering coefficient (σs)
characterize reduction of energy inside medium

• Attenuation coefficient: σt = σa + σs

• Overall attenuation: dLo(p,ω)
dt = −σt(p, ω)Li(p,−ω)

• Equation can be solved to find the beam transmittance
9



Beam Transmittance

The fraction of radiance transmitted between two points is given by

Tr(p −→ p′) = e−
r d
0 σt(p+tω,ω)dt

Notes
• The negative exponent is the optical density τ
• In a homogeneous medium σt is constant and the transmittance
can be calculated using the Beer-Lambert Law: τ = e−σtd

• Simpler implementation and better performance when
compared to heterogeneous media

10



Radiative Transfer Equation

Li(p, ω) = Tr(p0 −→ p)Lo(p0,−ω)︸ ︷︷ ︸
Surface Term

+
w tmax

0
Tr(p+ tω −→ p)Ls(p+ tω,−ω)dt︸ ︷︷ ︸

Medium Term

Overview of the Radiative Transfer Equation [Cha05]
• The RTE describes energy conservation within a medium
• Required for physically-based rendering (Light Transport)
• Not possible to solve analytically
• Solution can be estimated using Monte Carlo (MC) integration

11



Code Implementation



Redner Overview & Changes

Architecture is split into two parts:
Frontend
1. Added medium-related
Python classes

• σa and σs as scene
parameters

• Updated interop layer

2. Wrote test scripts to verify
overall implementation

Backend
1. Integrated path tracing logic
for homogeneous media

2. Expanded gradient
calculation code

Params. π

∇π

12



Redner’s Pipeline

Initialize Loss Backprop

New param. values

Current Target

�(T-C)2

Gradient Result

Scene Param. � F(�) ∇�F(�)

Render Grad Step Output
1 2

1 2

3

3 4

4

13



Evaluating Transmittance

Li(p, ω) = Tr(p0 −→ p)Lo(p0,−ω)︸ ︷︷ ︸
Surface Term

+
w tmax

0
Tr(p+ tω −→ p)Ls(p+ tω,−ω)dt︸ ︷︷ ︸

Medium Term

MC estimation of transmittance:
1. Sample a distance t along
ray f(t) = − ln(1−ξ)

σt

2. if t < tmax: Return beam
transmittance

3. else: Not in medium
4. Use transmittance to
evaluate surface or medium
term

Beam transmittance between two
points [PJH16]

14



Transmittance Code (Forward Pass)

1 Vector3 transmittance(const Medium &medium, const Ray &ray) {
2 if (medium.type == MediumType::homogeneous) {
3 // Use Beer-Lambert Law to calculate transmittance
4 if (ray.tmax < MaxFloat) {
5 return exp(-medium.sigma_t * ray.tmax);
6 } else {
7 return Vector3{0, 0, 0};
8 }
9 } else {

10 return Vector3{0, 0, 0};
11 }
12 }

Transmittance code from redner’s codebase [19b]

15



Deriving Transmittance Code

• Combine derivatives using
the Chain Rule

• Transmittance needs
derivatives for two
parameters (σt and t)

• Transmittance propagates to
RTE sampling function (S)

• ∂Tr
∂t also propagates to ray
intersection function (I)

σt t

Tr

S

I

Partial derivatives of
transmittance() [LB14]

16



Transmittance Code (Backward Pass)

1 void d_transmittance(const Medium &medium, const Ray &ray,
2 const Vector3 &d_output, DMedium &d_medium,
3 DRay &d_ray) {
4 if (medium.type == MediumType::homogeneous) {
5 if (ray.tmax < MaxFloat) {
6 auto output = exp(-medium.sigma_t * ray.tmax);
7 auto d_sigma_t = -d_output * output * ray.tmax;
8 d_ray.tmax += -sum(d_output * output * medium.sigma_t);
9 // sigma_t = sigma_a + sigma_s;

10 atomic_add(&d_medium.sigma_a[0], d_sigma_t[0]);
11 atomic_add(&d_medium.sigma_a[1], d_sigma_t[1]);
12 atomic_add(&d_medium.sigma_a[2], d_sigma_t[2]);
13 atomic_add(&d_medium.sigma_s[0], d_sigma_t[0]);
14 atomic_add(&d_medium.sigma_s[1], d_sigma_t[1]);
15 atomic_add(&d_medium.sigma_s[2], d_sigma_t[2]);
16 }
17 }
18 }

17



Evaluation



Evaluating The Implementation

The method used for evaluating the implementation:

1. Create multiple scenes containing one or more homogeneous
media

2. Perturb medium parameter(s) and render target and perturbed
scene

3. Run gradient for set amount of iterations optimizing medium
parameter(s)

4. Measure loss per iteration Li =
I∑

i=0

(Ti − Pi)2

• Record per-pixel difference as an image
• Low loss should result in a black image

5. Compare optimized parameters to target parameters

18



San Miguel Scene

• Chosen because of its
complexity

• Tested absorption and
scattering coefficients

• Gradient descent optimization
of two parameters (σa, σs) and
one homogeneous medium
covering the whole scene

19



San Miguel Test - Two Parameters (σa and σs)

medium σa σs

target 0.0001 0.0001 0.0001 0.001 0.001 0.001
perturbed 0.0009 0.0009 0.0009 0.2 0.2 0.2

Perturbed Image Per-pixel Difference Target Image

The goal is to remove the fog from the perturbed image by adjusting the
input parameters through gradient descent

20



San Miguel Test - Result

Recovered values for σa and σs a ter gradient descent optimization

medium σa σs

perturbed 0.0001 0.0001 0.0001 0.0022 0.0024 0.0026
target 0.0001 0.0001 0.0001 0.001 0.001 0.001

Perturbed Image Per-pixel Difference Target Image

Verifies that the implementation works within a reasonable degree
21



San Miguel - Measured Loss

0 20 40 60 80 100

·104

Iteration

Overall loss

Li

The reduction of the loss graphed over 100 iterations of gradient descent

22



Conclusion



Summary

1. Introduced the theory behind differentiable rendering &
volumetric scattering

2. Gained an understanding of the architecture of a differentiable
renderer

3. Viewed code samples that demonstrated how to implement
parts of the RTE

4. Verified that homogeneous participating media can be
differentiably rendered

23



Conclusion I

Is differentiable rendering useful for the original problem case?

• Differentiable rendering has potential use for assisting in the
modeling workflow of 3D application users

• Performance improvements still need to be made
• San Miguel scene takes minutes for one iteration of rendering +
backpropagation

• An experienced user can most likely manually adjust parameters
faster

• For now better suited for offline tasks (shape reconstruction,
style transfer, etc.) [Liu+19]

24



Conclusion II

Potential enhancements:

• Investigate San Miguel test scene data more in depth
• Perceived differences versus actual parameters

• Expand to heterogeneous media
• Account for discontinuities in Radiative Transfer Equation
• Write a plugin for open-source renderers (Cycles [Fou20],
Appleseed [19a], etc.)

25



Questions?

25



Notable Differentiable Renderers

Renderer Pros Cons
OpenDR Easy to use

Leverages OpenCV
Approximates gradients
Not physically-based

So tRas Operates on probability
maps

Different use case
Not physically-based

Mitsuba 2 Flexible architecture
Volumetric scattering

Late release

Redner Physically-based
Mature codebase

No volumetric scattering

Table 1: Redner was chosen in part due to these aspects



Cornell Box Test - Absorption Coefficient

Gradient Descent Parameters: 100 iterations & learning rate = 0.005

medium σa

perturbed 0.3 0.3 0.3
target 0.05 0.05 0.05

Perturbed Image Per-pixel Difference Target Image



Cornell Box Test - Results

Recovered values for σa a ter gradient descent optimization

medium σa

target 0.05 0.05 0.05
final 0.0471 0.0471 0.0471

Final Image Per-pixel Difference Target Image



Cornell Box - Measured Loss

0 20 40 60 80 100

·104

22.32

Iteration

Overall Loss

L∗

The loss steadily declines until a local minimum is reached a ter 80
iterations.



Surface & Medium Term

Li(p, ω) = Tr(p0 −→ p)Lo(p0,−ω)︸ ︷︷ ︸
Surface Term = βsurf

+
w tmax

0
Tr(p+ tω −→ p)Ls(p+ tω,−ω)dt︸ ︷︷ ︸

Medium Term = βmed

Monte Carlo Estimators
The respective estimators for βsurf and βmed:

• βsurf = Tr(p−→p+tω)
psurf

• psurf = 1−
r tmax
0 pt(t)dt

• βmed = σs(p+tω)Tr(p−→p+tω)
pt(t)

• PDF: pt(t) = σte−σtt



Radiative Transfer Equation

Li(p, ω) = Tr(p0 −→ p)Lo(p0,−ω)︸ ︷︷ ︸
Surface Term

+
w tmax

0
Tr(p+ tω −→ p)Ls(p+ tω,−ω)dt︸ ︷︷ ︸

Medium Term

Terms of the RTE
• Two distinct terms to which MC can be applied
• Only one of the term needs to be estimated at a time



Radiative Transfer Equation

Li(p, ω) = Tr(p0 −→ p)︸ ︷︷ ︸
Transmittance

Lo(p0,−ω)+
w tmax

0
Tr(p+ tω −→ p)︸ ︷︷ ︸

Transmittance

Ls(p+tω,−ω)dt

Transmittance
• The amount of light that passes through the medium a ter
accounting for absorption, scattering, and emission. [07]

• Will be examined more in-depth later



Radiative Transfer Equation

Li(p, ω) = Tr(p0 −→ p) Lo(p0,−ω)︸ ︷︷ ︸
Exitant Radiance

+
w tmax

0
Tr(p+tω −→ p)Ls(p+tω,−ω)dt

Exitant radiance
• Describes the amount of light that is emitted at the surface of
the medium



Radiative Transfer Equation

Li(p, ω) = Tr(p0 −→ p)Lo(p0,−ω)+
w tmax

0
Tr(p+tω −→ p) Ls(p+ tω,−ω)︸ ︷︷ ︸

Source Term

dt

Source term
• Accounts for scattering inside the medium
• Scattering direction determined by a phase function. [HG41]
• Phase function be thought of as analog to a BSDF



References i

References

transmittance. Oct. 2007. url:
https://en.wikipedia.org/wiki/Transmittance
(visited on 06/04/2020).

God rays 8 by hanpanman on DeviantArt. Aug. 2011. url:
https:
//www.deviantart.com/hanpanman/art/God-
rays-8-255417166 (visited on 06/02/2020).
A modern, open source production renderer. Sept. 2019. url:
https://appleseedhq.net/.

https://en.wikipedia.org/wiki/Transmittance
https://www.deviantart.com/hanpanman/art/God-rays-8-255417166
https://www.deviantart.com/hanpanman/art/God-rays-8-255417166
https://www.deviantart.com/hanpanman/art/God-rays-8-255417166
https://appleseedhq.net/


References ii

tstullich/redner - A differentiable Monte Carlo path tracer.
2019. url: https://github.com/tstullich/redner
(visited on 06/02/2020).

Subrahmanyan Chandrasekhar. Radiative Transfer. Dover
Publications, 2005.

Blender Foundation. blender.org - Home of the Blender
project - Free and Open 3D Creation So tware. Feb. 2020.
url: https://blender.org (visited on 02/28/2020).
L. G. Henyey and J. L. Greenstein. “Diffuse radiation in the
Galaxy.”. In: ApJ 93 (Jan. 1941), pp. 70–83. doi:
10.1086/144246.

https://github.com/tstullich/redner
https://blender.org
https://doi.org/10.1086/144246


References iii

Imphenzia. Lowpoly Tree Shader in Amplify Shader Editor
for Unity. Youtube. July 4, 2018. url:
https://www.youtube.com/watch?v=o0ZlwiXP48I
(visited on 06/02/2020).

Matthew Loper and Michael Black. “OpenDR: An
Approximate Differentiable Renderer”. In: Sept. 2014. doi:
10.1007/978-3-319-10584-0_11.
Tzu-Mao Li et al. “Differentiable Monte Carlo Ray Tracing
through Edge Sampling”. In: ACM Trans. Graph. 37.6 (Dec.
2018). issn: 0730-0301. doi: 10.1145/3272127.3275109.
url: https://doi.org/10.1145/3272127.3275109.
Shichen Liu et al. “So t Rasterizer: A Differentiable Renderer
for Image-based 3D Reasoning”. In: The IEEE International
Conference on Computer Vision (ICCV) (Oct. 2019).

https://www.youtube.com/watch?v=o0ZlwiXP48I
https://doi.org/10.1007/978-3-319-10584-0_11
https://doi.org/10.1145/3272127.3275109
https://doi.org/10.1145/3272127.3275109


References iv

Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically
Based Rendering: From Theory to Implementation (3rd ed.)
3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., Nov. 2016, p. 1266. isbn: 9780128006450.


	Introduction
	Differentiable Rendering
	Volumetric Scattering
	Code Implementation
	Evaluation
	Conclusion
	Appendix
	References


