v

Extending Differentiable Rendering Towards
Participating Media

Master’'s Thesis Presentation

Tim Stullich
Monday 15" June, 2020

Technical University Berlin - Department of Computer Engineering and Microelectronics



Table Of Contents

1. Introduction

2. Differentiable Rendering
3. Volumetric Scattering
4. Code Implementation

5. Evaluation

6. Conclusion



Introduction



Motivation

Shader node graph for a low polycount tree [Imp18]




- Modern shader code is becoming increasingly more complex
- Negatively impacts productivity of 3D application users

- Currently there are no known solutions to this problem

- Can differentiable rendering assist this use case?



Thesis Overview

Thesis Goal
Extend and evaluate differentiable rendering by integrating
homogeneous participating media into a differentiable renderer

This was accomplished by:

1. Researching differentiable rendering to find a suitable renderer

2. Extending redner’s [Li+18] functionality to render homogeneous
participating media

3. Evaluating how the code implementation solves the shader
graph problem by running a number of experiments



Differentiable Rendering




What Is Differentiable Rendering?

3D Scene

Rendering F(m)

B ————
<
Inverse?
Parameters (1) Pixel Color (I)
Camera Pose
Geometry
Materials

Lights



Backpropagation

- Machine learning algorithm
to train neural networks

- Uses gradient vector V to
minimize a loss function
1
- L = arg min Z(T, -Gy
T i=0
- Gradient Descent

- Propagates loss to inputs
through the Chain Rule

- Allows for adjusting of scene
parameters according to the
pixel color

Gradient vector of f [LB14]



Gradient Descent
ErrorA r 1 Loss Function

Gradient w.r.t.
Scene Param.
=

Scene Params

Target Img.



Volumetric Scattering



Volumetric Scattering Terminology

- Occurs when light interacts
with particles outside of a
vacuum

- Photons collide with
particles which are
absorbed, scattered or
emitted

- Bounded volume is called a
participating medium

"God rays” shining through fog. [11]

- Homogeneous vs.
heterogeneous medium



Volumetric Scattering Processes

Absorption (o) Scatterlng os) Emission

Notable properties

- Absorption coefficient (o), scattering coefficient (o)
characterize reduction of energy inside medium
- Attenuation coefficient: oy = o4 + 05

- Overall attenuation: @) — 4 (p, w)Li(p, —w)
- Equation can be solved to find the beam transmittance



Beam Transmittance

The fraction of radiance transmitted between two points is given by

T(p—=p)=e" & oe(p+tw,w)dt

Notes

- The negative exponent is the optical density T

- In a homogeneous medium o is constant and the transmittance
can be calculated using the Beer-Lambert Law: 7 = e~

- Simpler implementation and better performance when
compared to heterogeneous media



Radiative Transfer Equation

Lf(pvw)

tmax
Lo(po, —w) + | Ls(p + tw, —w)dt

Surface Term

Medium Term

Overview of the Radiative Transfer Equation [Cha05]

- The RTE describes energy conservation within a medium

- Required for physically-based rendering (Light Transport)
- Not possible to solve analytically

- Solution can be estimated using Monte Carlo (MC) integration

1



Code Implementation




Redner Overview & Changes

Architecture is split into two parts:
Frontend

1. Added medium-related
Python classes

- 0q and o5 as scene
parameters
- Updated interop layer

2. Wrote test scripts to verify
overall implementation

Backend

1. Integrated path tracing logic
for homogeneous media

2. Expanded gradient
calculation code



Redner’s Pipeline

r Y e
-

Cu rrent Target Gradient Result
) ©)] ®
Scene Param. Tt F() 3(T-C)? V,.F(m)
@ @ €] ®
Initialize Render Loss Backpro Grad Step | -1 Output

N

New param. values



Evaluating Transmittance

tmux
Li(p,w) = Lo(po, —w)+ | Lo(p + tw, —w)dt

Surface Term Medium Term

MC estimation of transmittance:

1. Sample a distance t along
ray f(t) = — (=€) P> ® .

ot

2. if t < tmex: Return beam

transmittance Beam transmittance between two
3. else: Not in medium points [PJH16]
4. Use transmittance to

evaluate surface or medium

term

14



Transmittance Code (Forward Pass)

1 Vector3 transmittance(const Medium &medium, const Ray &ray) {

2 if (medium.type == MediumType: :homogeneous) {
3 // Use Beer-Lambert Law to calculate transmittance
4 if (ray.tmax < MaxFloat) {

5 return exp(-medium.sigma_t * ray.tmax);

6 } else {

7 return Vector3{0, 0, 0};

8 }

9 } else {

10 return Vector3{0, 0, 0};

11 }

12}

Transmittance code from redner’s codebase [19b]



Deriving Transmittance Code

- Combine derivatives using
the Chain Rule

- Transmittance needs s
derivatives for two T,

parameters (oy and t) ‘
- Transmittance propagates to or,
RTE sampling function (S) \8t

Partial derivatives of
transmittance() [LB14]

. % also propagates to ray
intersection function (1)

16



Transmittance Code (Backward Pass)

1 void d_transmittance(const Medium &medium, const Ray é&ray,
const Vector3 &d_output, DMedium &d_medium,
DRay &d_ray) {

M)

3

4 if (medium.type == MediumType: :homogeneous) {

5 if (ray.tmax < MaxFloat) {

6 auto output = exp(-medium.sigma_t * ray.tmax);
7 auto d_sigma_t = -d_output =* output = ray.tmax;
8 d_ray.tmax += -sum(d_output * output * medium.sigma_t);
9 // sigma_t = sigma_a + sigma_s;

10 atomic_add(&d_medium.sigma_a[0], d_sigma_t[0]);
11 atomic_add(&d_medium.sigma_a[1], d_sigma_t[1]);
12 atomic_add(&d_medium.sigma_a[2], d_sigma_t[2]);
13 atomic_add(&d_medium.sigma_s[0], d_sigma_t[0]);
14 atomic_add(&d_medium.sigma_s[1], d_sigma_t[1]);
15 atomic_add(&d_medium.sigma_s[2], d_sigma_t[2]);
16 }

17 }

18 }




Evaluation




Evaluating The Implementation

The method used for evaluating the implementation:

1.

Create multiple scenes containing one or more homogeneous
media

Perturb medium parameter(s) and render target and perturbed
scene

Run gradient for set amount of iterations optimizing medium
parameter(s)
|
Measure loss per iteration L; = > (T, — P;)’
i=0
- Record per-pixel difference as an image
- Low loss should result in a black image

Compare optimized parameters to target parameters



San Miguel Scene

- Chosen because of its
complexity

- Tested absorption and
scattering coefficients

- Gradient descent optimization
of two parameters (o, os) and
one homogeneous medium
covering the whole scene

19



San Miguel Test - Two Parameters (o, and o)

medium o Os
target 0.0001 0.0001 0.0001 | 0.001 0.001 0.001
perturbed | 0.0009 0.0009 0.0009 | 0.2 0.2 0.2

Perturbed Image Per-pixel Difference Target Image

The goal is to remove the fog from the perturbed image by adjusting the
input parameters through gradient descent

20



San Miguel Test - Result

Recovered values for o, and o5 after gradient descent optimization

medium o Os
perturbed | 0.0001 0.0001 0.0001 | 0.0022 0.0024 0.0026
target 0.0001 0.0001 0.0001 | 0.001 0.001 0.001

Perturbed Image Per-pixel Difference Target Image

Verifies that the implementation works within a reasonable degree
21



San Miguel - Measured Loss

104 Overall loss

0 20 40 60 80 100
Iteration

The reduction of the loss graphed over 100 iterations of gradient descent

22



Conclusion




1. Introduced the theory behind differentiable rendering &
volumetric scattering

2. Gained an understanding of the architecture of a differentiable
renderer

3. Viewed code samples that demonstrated how to implement
parts of the RTE

4. Verified that homogeneous participating media can be
differentiably rendered

23



Conclusion |

Is differentiable rendering useful for the original problem case?

- Differentiable rendering has potential use for assisting in the
modeling workflow of 3D application users
- Performance improvements still need to be made
- San Miguel scene takes minutes for one iteration of rendering +
backpropagation
- An experienced user can most likely manually adjust parameters
faster
- For now better suited for offline tasks (shape reconstruction,
style transfer, etc.) [Liu+19]

24



Conclusion Il

Potential enhancements:
- Investigate San Miguel test scene data more in depth
- Perceived differences versus actual parameters
- Expand to heterogeneous media
- Account for discontinuities in Radiative Transfer Equation
- Write a plugin for open-source renderers (Cycles [Fou20],
Appleseed [19a], etc.)

25



Questions?

25



Notable Differentiable Renderers

Renderer | Pros Cons
OpenDR | Easy to use Approximates gradients
Leverages OpenCV Not physically-based
SoftRas | Operates on probability Different use case
maps Not physically-based
Mitsuba 2 | Flexible architecture Late release
Volumetric scattering
Redner Physically-based No volumetric scattering
Mature codebase

Table 1: Redner was chosen in part due to these aspects



Cornell Box Test - Absorption Coefficient

Gradient Descent Parameters: 100 iterations & learning rate = 0.005

medium oq
perturbed | 0.3 0.3 0.3
target 0.05 0.05 0.05

Perturbed Image Per-pixel Difference Target Image




Cornell Box Test - Results

Recovered values for o, after gradient descent optimization

medium Oq
target 0.05 0.05 0.05
final 0.0471 0.0471 0.0471

Final Image Per-pixel Difference Target Image




Cornell Box - Measured Loss

10% Overall Loss

0 20 40 60 80 100
Iteration

The loss steadily declines until a local minimum is reached after 80
iterations.



Surface & Medium Term

Li(p,w) = T(po = P)Lo(Po, — f (p + tw = p)Ls(p + tw, —w)dt

Surface Term = By Medium Term = Breq

Monte Carlo Estimators
The respective estimators for Bs, s and Bmeq:

. _ os(p+tw)T(p—>pttw)
Bmed - 0)

- B _ T(p—=p+tw)
sur Psurf

. . — —ott
Dot — 1— tmax Pt( ) PDF: pt(t) = gt 7t



Radiative Transfer Equation

L(p) = L

Surface Term Medium Term

Terms of the RTE

- Two distinct terms to which MC can be applied
- Only one of the term needs to be estimated at a time



Radiative Transfer Equation

tmux

Li(p,w) = Lo(po, —w)+ | Ls(p+1w, —w)dt

——— 0 ~—
Transmittance Transmittance

Transmittance

- The amount of light that passes through the medium after
accounting for absorption, scattering, and emission. [07]

- Will be examined more in-depth later



Radiative Transfer Equation

tmax
Li(p,w) = Te(po = p) + [, Telp+tw = p)Ls(ptw, —w)dt

Exitant Radiance

Exitant radiance

- Describes the amount of light that is emitted at the surface of
the medium



Radiative Transfer Equation

Li(p,w) = Tr(Po = p)Lo(Po, —w +I p+tw — p) dt
SN——
Source Term

Source term

- Accounts for scattering inside the medium
- Scattering direction determined by a phase function. [HG41]
- Phase function be thought of as analog to a BSDF



References i

References

E transmittance. Oct. 2007. URL:
https://en.wikipedia.org/wiki/Transmittance
(visited on 06/04/2020).

B God rays 8 by hanpanman on DeviantArt. Aug. 2011. URL:
https:
//www.deviantart.com/hanpanman/art/God-
rays-8-255417166 (visited on 06/02/2020).

B A modern, open source production renderer. Sept. 2019. URL:
https://appleseedhq.net/.


https://en.wikipedia.org/wiki/Transmittance
https://www.deviantart.com/hanpanman/art/God-rays-8-255417166
https://www.deviantart.com/hanpanman/art/God-rays-8-255417166
https://www.deviantart.com/hanpanman/art/God-rays-8-255417166
https://appleseedhq.net/

References ii

B

tstullich/redner - A differentiable Monte Carlo path tracer.
2019. URL: https://github.com/tstullich/redner
(visited on 06/02/2020).

Subrahmanyan Chandrasekhar. Radiative Transfer. Dover
Publications, 2005.

Blender Foundation. blender.org - Home of the Blender
project - Free and Open 3D Creation Software. Feb. 2020.
URL: https://blender.org (visited on 02/28/2020).

L. G. Henyey and J. L. Greenstein. “Diffuse radiation in the
Galaxy””. In: ApJ 93 (Jan. 1941), pp. 70-83. DOI:
10.1086/144246.


https://github.com/tstullich/redner
https://blender.org
https://doi.org/10.1086/144246

References iii

B

Imphenzia. Lowpoly Tree Shader in Amplify Shader Editor
for Unity. Youtube. July 4, 2018. URL:
https://www.youtube.com/watch?v=00Z1lwiXP481
(visited on 06/02/2020).

Matthew Loper and Michael Black. “OpenDR: An
Approximate Differentiable Renderer”. In: Sept. 2014. DO
10.1007/978-3-319-10584-0_11.

Tzu-Mao Li et al. “Differentiable Monte Carlo Ray Tracing
through Edge Sampling”. In: ACM Trans. Graph. 37.6 (Dec.
2018). 1SSN: 0730-0301. pol: 10.1145/3272127.3275109.
URL: https://doi.org/10.1145/3272127.3275109.

Shichen Liu et al. “Soft Rasterizer: A Differentiable Renderer
for Image-based 3D Reasoning”. In: The IEEE International
Conference on Computer Vision (ICCV) (Oct. 2019).


https://www.youtube.com/watch?v=o0ZlwiXP48I
https://doi.org/10.1007/978-3-319-10584-0_11
https://doi.org/10.1145/3272127.3275109
https://doi.org/10.1145/3272127.3275109

References iv

Bl Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically
Based Rendering: From Theory to Implementation (3rd ed.)
3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., Nov. 2016, p. 1266. ISBN: 9780128006450.



	Introduction
	Differentiable Rendering
	Volumetric Scattering
	Code Implementation
	Evaluation
	Conclusion
	Appendix
	References


